Intramuscular adipogenesis is inhibited by myo-endothelial progenitors with functioning Bmpr1a signaling

نویسندگان

  • Ping Huang
  • Tim J. Schulz
  • Ariane Beauvais
  • Yu-Hua Tseng
  • Emanuela Gussoni
چکیده

Developing human muscle contains inter-myofibre progenitors expressing Bmp-receptor 1a (Bmpr1a) and Myf5 that respond to stimulation with Bmp4. Here we ablate Bmpr1a in Myf5- and MyoD-expressing cells in vivo. Mutant mice reveal increased intramuscular fat and reduced myofibre size in selected muscles, or following muscle injury. Myo-endothelial progenitors are the most affected cell type: clonal studies demonstrate that ablation of Bmpr1a in myo-endothelial cells results in decreased myogenic activity, while adipogenic differentiation is significantly increased. Downstream phospho-Smad 1, 5, 8 signalling is also severely decreased in mutant myo-endothelial cells. Lineage tracing of endothelial cells using VE-cadherin(Cre) driver failed to reveal a significant contribution of these cells to developing or injured skeletal muscle. Thus, myo-endothelial progenitors with functioning Bmpr1a signalling demonstrate myogenic potential, but their main function in vivo is to inhibit intramuscular adipogenesis, both through a cell-autonomous and a cell-cell interaction mechanism.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Invited review: mesenchymal progenitor cells in intramuscular connective tissue development.

The abundance and cross-linking of intramuscular connective tissue contributes to the background toughness of meat, and is thus undesirable. Connective tissue is mainly synthesized by intramuscular fibroblasts. Myocytes, adipocytes and fibroblasts are derived from a common pool of progenitor cells during the early embryonic development. It appears that multipotent mesenchymal stem cells first d...

متن کامل

Uncoupling protein 1 expression in adipocytes derived from skeletal muscle fibro/adipogenic progenitors is under genetic and hormonal control

BACKGROUND Intramuscular fatty infiltration is generally associated with the accumulation of white adipocytes in skeletal muscle and unfavourable metabolic outcomes. It is, however, still unclear whether intramuscular adipocytes could also acquire a brown-like phenotype. Here, we detected intramuscular expression of brown adipocyte markers during fatty infiltration in an obesity-resistant mouse...

متن کامل

Isl1Cre reveals a common Bmp pathway in heart and limb development.

A number of human congenital disorders present with both heart and limb defects, consistent with common genetic pathways. We have recently shown that the LIM homeodomain transcription factor islet 1 (Isl1) marks a subset of cardiac progenitors. Here, we perform lineage studies with an Isl1Cre mouse line to demonstrate that Isl1 also marks a subset of limb progenitors. In both cardiac and limb p...

متن کامل

miR-425-5p Inhibits Differentiation and Proliferation in Porcine Intramuscular Preadipocytes

Intramuscular fat (IMF) content affects the tenderness, juiciness, and flavor of pork. An increasing number of studies are focusing on the functions of microRNAs (miRs) during porcine intramuscular preadipocyte development. Previous studies have proved that miR-425-5p was enriched in porcine skeletal muscles and played important roles in multiple physiological processes; however, its functions ...

متن کامل

Notch Signaling Functions as a Cell-Fate Switch between the Endothelial and Hematopoietic Lineages

Recent studies have begun to elucidate how the endothelial lineage is specified from the nascent mesoderm. However, the molecular mechanisms which regulate this process remain largely unknown. We hypothesized that Notch signaling might play an important role in specifying endothelial progenitors from the mesoderm, given that this pathway acts as a bipotential cell-fate switch on equipotent prog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014